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Abstract—We present an event-based interactive storytelling
system for virtual 3D environments that aims to offer free-form
user experiences while constraining the narrative to follow author
intent. The characters of our stories are represented as smart
objects, each having their own state and set of capabilities that
they expose to the virtual world. Our narratives are represented
as a collection of branching stories, where narrative flow is
controlled by author-defined states. A user model is employed
to evaluate the user’s engagement with smart objects and events,
based on proximity, interaction patterns and visibility to the user.
A two-level online planning system is designed to find the best
narrative trajectory along pre-authored stories, according to the
user model, and to generate a story sequence to the best trajectory
with Monte Carlo Tree Search. We present the capabilities of our
interactive storytelling system on an example story and describe
the adaptations required for modeling user engagement in AR
and VR applications.

Index Terms—interactive narratives, narrative generation,
planning, artificial intelligence, Monte Carlo Tree Search, user
perception

I. INTRODUCTION

The goal of any interactive story is to give the user a high
degree of agency during their experience. Unfortunately, user
agency often conflicts with the plot intended by the story’s
author. Balancing user agency with engaging, author-defined
narrative experiences is a challenge in Interactive Storytelling
(IS). This balance is usually mediated using an experience
management system, which monitors story progression and
intervenes according to a model of narrative quality [1].
To enable reasoning about the progression and generation
of interactive narratives using AI planning, a story domain
representation is required [2]. To further adhere to narrative
quality, a user model may be used to guide the planning
algorithm towards a solution preferred by the player.

We propose an event-based storytelling platform to synthe-
size free-form interactive experiences within a 3D animated
story world. It uses a novel story domain representation,
consisting of smart objects and affordances, rather than Plan-
ning Domain Definition Language (PDDL) [3]. The possible
storylines are created by an author in the form of branching
stories, together with predefined user interactions that can be
triggered at runtime. The stories can be loosely coupled, as
an online planner is taking care of narrative generation to
connect the storylines at runtime. In order to keep the user
on a preferred trajectory, we employ a user model, based on

the user’s engagement with the virtual characters, to guide the
planner.

This paper describes the following three contributions of
our platform: (1) An interactive story domain representation
based on smart objects, (2) an engagement model to infer user
preference as well as user knowledge of important narrative
information and (3) a two-level online planning framework
to find optimal paths, and mediate user actions and inferred
interests with author-intended story sequences.

We present the main concepts of our interactive storytelling
system on an example story and describe the adaptations
required for modeling engagement in AR and VR applications.
The resulting applications are visualized in a video on the
project page.

II. RELATED WORK

Our approach takes inspiration from existing research in
interactive narrative technology, as described below.

A. Experience Management

Interactive narratives require intelligence to guide the ex-
perience in a satisfying way. Riedl and Bulitko [1] advocate
for the broader term “Experience Management” and provide a
comparison of several interactive narrative systems in terms of
author intent, character autonomy and player modeling. Plan-
based experience management frameworks include Mime-
sis [4] and Merchant of Venice [5], which offer strong story-
based control of virtual characters while simultaneously sup-
porting automatically generated stories. The Mimesis system,
for example, demonstrates the concept of narrative mediation,
which exploits plan-based narrative representations to manage
and respond to user interactions [6]. In their recent work [7]
Robertson et al. leverage the user’s perception of the world
state to widen the space of possible accommodations of user
interactions. We introduce a similar notion of user knowledge
that can help the author to build the story around what the
system assumes the user has learned about the narrative.
Inspired by previous work, our system also aims to mediate
between user interactions and author intent.

B. User Modeling

Another challenge for experience management systems is
to provide a personalized experience for the user. Yu and
Riedl [8] propose a data-driven approach to find the best fitting



path for a user to enjoy a set of possible stories. The system
utilizes a user feedback mechanism as well as collaborative
filtering to nudge the user towards the most appropriate story
branch. The PaSSAGE system [9] proposes to find the best
story path by selecting author-annotated encounters based on
the user’s play styles. In a follow-up work, Thue et al. [10]
explore the selection of the best encounter based on a model
of perceived user agency. Our system constructs a user model
based on user knowledge of the story as well as engagement
with virtual characters and objects, which is used to determine
the optimal future narrative experience.

C. Narrative Generation

Since Young [11] first proposed AI planning for the task
of interactive narrative generation, a variety of plan-based
approaches have been adopted [2], [12]. As planning domains
grow in the number of actions or participants, traditional
planning techniques undergo a combinatorial explosion. Sev-
eral planners like CPOCL [13], IPOCL [14] or Glaive [15]
aim to reduce complexity by considering characteristics of
character believability, such as intention or conflict. Kartal et
al. [16] have demonstrated the use of Monte Carlo Tree Search
(MCTS) to generate believable stories in domains having a
high branching factor. They use a Bayesian story evaluation
method to generate believable stories that achieve user defined
goals. Soo et al. [17] extend this concept and designed a
constrained MCTS algorithm that allows users to specify both
hard and soft constraints. The soft constraints are expressed as
a utility function to evaluate the quality of candidate stories,
whereas hard constraints ensure plot coherence. Inspired by
these approaches, we integrate an MCTS based algorithm
within a novel domain representation to generate narratives
that accommodate user interactions.

III. OVERVIEW

Our experience management system takes author-intended
stories and controls the narrative progression based on user
agency and engagement with the characters. To do so, the
system: (1) continuously updates a user model, (2) determines
an optimal path through the space of authored stories, (3)
embeds user interactions into the running narrative considering
the optimal path and (4) visualizes authored and emergent
events as 3D animations.

The experience management system consists of the compo-
nents visualized in Figure 1. The Experience Manager con-
trols the playback of the story arc, observes user engagement,
listens for user interactions and updates the other components
as the story progresses. The Story Domain Representation
(Section IV) contains the possible stories to tell, the story
events, the story’s state as well as the characters, objects
and their states. The User Model (Section V) stores user
engagement values for each smart object in the story, which
are then used to find an optimal path in the space of authored
stories. The Two-Level Online Planning System (Section VI)
consists of two layers: the first calculates the previously
mentioned optimal paths by maximizing a user engagement
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Fig. 1. The Experience Management System. The experience manager on
the left updates the User Model and the current state of the Story Domain
Representation. The two-level Online Planning System uses the two models to
calculate an optimal path when confronted with the task of narrative generation
due to a user interaction.

value, whereas the second layer generates story sequences in
real-time in order to create a path to that optimal storyline.

IV. STORY DOMAIN REPRESENTATION

Our system builds upon CANVAS [18] for generating 3D
animated stories and uses a similar domain representation,
which is described in Section IV-A.

A. Domain Representation for Passive Narratives

Smart Objects w = 〈q,F〉 represent the characters and
objects in the story world. Each has a state q and a set F
of affordances f ∈ F, which it exposes to the story world.
An Affordance f(wo, wu) ∈ F is a capability offered by
a smart object wo to be used by another smart object wu.
Invoking an affordance results in an animated interaction
between the two smart objects that can change physical states.
An affordance can also require that its participants fulfill
certain physical state preconditions. Physical States are a
binary representation of general smart object properties, such
as attributes (e.g. isStanding), roles (e.g. isHuman) and
relations R(wi, wj) between different smart objects wi and wj
(e.g. isInLoveWith). These states are stored individually
for each smart object.

An Event e = 〈t, pree, eff e〉 defines a certain action
performed by one or several smart object participants. Each
event has a parameterized behavior tree [19] representation t,
consisting of a sequence of affordances f , whose preconditions
are collected to define pree, the preconditions for the whole
event, and similarly the state effects of the whole event
eff e. An Event Instance I = 〈e, w〉 is an event e that
has been assigned a list of valid smart object participants
w. A Beat Bi = {I1, . . . , Im} contains one or more event
instances Ii that are executed simultaneously. A Story Arc
α = (B1, B2, . . . , Bn) is an ordered sequence of beats that
are replayed one after the other during execution of the story.

B. Domain Extensions for Interactive Narratives

In order to allow for interactive branching stories, our
system introduces the following additional concepts:

Story States σ are defined during authoring and can be used
to control the flow of the narrative through branching. A story
state is never the effect of an event but has to be attached by



the author to a specific event instance. Accordingly, a Story
State Instance σI is a story state that is conveyed by event
instance I . Experience States ξ are very similar to story
states. They are also attached to specific event instances but
are only set if the user actually experiences them. Therefore,
every Experience State Instance ξI is subject to different
conditions, defining whether or not the user has consumed that
story information. This decision is made at runtime depending
on how engaged the user is with the event instance convey-
ing this experience state. See Section V for more details.
The World State s represents the collection of all physical
states of every smart object, as well as the values for story
states and experience states. To allow story states to control
the branching, we extend story arcs to support world state
preconditions, and story state and experience state invariants
that have to remain true for the execution of that story arc.
If the preconditions or invariant are not met, that story arc
cannot be executed. This is conceptually similar to using state
trajectory constraints as landmarks [20] used to decompose
narrative generation tasks [5].

A Story Graph A = {α1, . . . , αn} is a collection of story
arcs that are connected by follow-up arc relations as illustrated
in Figure 2. When the narrative reaches the end of a story arc
a follow-up arc is selected based on the currently set story
states and experience states. Every story graph has one story
arc, annotated with preconditions, that designates the entry
point into this graph (illustrated in Figure 2 (a)). Our system
supports multiple independent story graphs and can navigate
between them by online planning, as visualized in Figure 3.
This allows the story to be built in a modularized way. A
Storyline is a valid sequence of story arcs that can be taken
in order to traverse through a story graph.

A User Interaction IU = 〈Ip, T, δ, λ〉 is an author-defined
event that can be triggered by the user to influence the world
state. It consists of a story time window δ during which the
user can cause the (partially) populated event instance Ip to
be executed by activating the set of triggers T . Triggers can
include platform specific inputs, world state conditions, as
well as proximity to and visibility of specific smart objects.
If Ip is only partially populated, the remaining participants
are dynamically selected based on the rules defined in the
policies λ. Policies select smart objects wi at runtime based
on a combination of proximity to a specific smart object, the
smart object that the user clicked on, the current state of a
smart object or their relations to other smart objects. These
policies give the author the tools to create interaction events
that affect different smart objects depending on the context
in which they are triggered. The event instance Ip can also
carry story state instances, allowing for more narrative control.
For example, executing a user interaction that conveys story
state secretRevealed during a story arc with invariant
¬secretRevealed would force the experience manager to
immediately leave that story arc and search for a valid one to
execute, as illustrated in Figure 3 (d).
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Fig. 2. Story Graph. A story graph has exactly one single point of entry (a).
Each contained story arc has an initial state with preconditions and an end
point, which can lead to several follow-up arcs.

V. A MODEL OF USER ENGAGEMENT

Since our system relies on many storylines that could be
executed, we require a model of the user’s preferences to help
the experience manager deciding on the best one. Following
this storyline results in a personalized experience.

A. User Engagement

While the story is being played, the experience manager
observes the user according to how involved they are with
a smart object wo or event e. We capture this involvement
for each smart object and event individually in the form
of engagement values. Engagement values are continuously
calculated as a combination of the user’s proximity to wo, how
often the user interacts with wo and how well wo is visible to
the user:

vproximity
wo

= min(1,
√

1/d(wo, u)) ,

vinteraction
wo

=

{
1, if a click on wo was registered
0, otherwise

vvisibility
wo

=
√
A(wo) · C(wo) ,

(1)

where d(wo, u) describes the distance between the user u and
the smart object wo. A(wo) represents the relative size of the
smart object’s enclosing box on screen and C(wo) describes
how central the smart object is relative to the user’s field of
view. To calculate C(wo) we first need:

∆x = (~zwo
− ~zcam) · ~x and

∆y = (~zwo
− ~zcam) · ~y ,

where ~zcam is the normalized forward vector of the camera,
~zwo is the normalized vector from the camera to where smart
object wo is visible on screen and ~x and ~y represent the x- and
y-axis unit vectors, respectively. With these we calculate the
field of view in direction of where the smart object resides:

γFOV =
∆x · φFOV + ∆y · θFOV

∆x+ ∆y
,

where φFOV is the camera’s horizontal and θFOV its vertical
field of view in degrees. γFOV is then used to normalize
the angle between ~zcam and ~zwo

, which we define to be the
centrality of smart object wo:

C(wo) =
arccos(~zcam · ~zwo

)

0.5 · γFOV
.



The engagement value vwo
for smart object wo at any given

moment is then calculated as:

vwo
=

1

3
(vproximity
wo

+ vinteraction
wo

+ vvisibility
wo

) .

The User Model can be formalized as M = 〈VW , VE〉,
where vwo

∈ VW depict the user’s engagements for each
smart object wo and ve ∈ VE are the user’s engagement values
for each event e. Engagement values vwo are calculated at a
regular interval during execution of the story. The values stored
in the user model are a running average of these measurements.

In order to infer engagement values ve for an event e, we
require event e to be featured in an event instance I = 〈e, w〉
of the story. During I’s execution, the experience manager
calculates the engagement values vwo

with the participants of
I and averages these values over the course of I’s execution
to get an estimate vI for how engaged the user was with that
event instance. The average engagement of an event e is then
calculated as the running average of all engagement values vI
of executed event instances featuring e.

B. Experience State Instances

When an event instance I conveys an experience state
instance ξI , we calculate the additional engagement value vξI
to assess whether the user experienced ξI or not. This value
is calculated in a similar fashion as vI . The difference is that,
depending on the conditions the author set to be necessary
for experiencing ξI , only a subset of the terms in Equation 1
is considered for calculating vξI . For example, if look-at is
not required, then vvisibility

wo
from Equation 1 is not considered.

This might be the case when the story instance conveying the
information is a dialogue for which the user only has to be in
hearing range but is not required to actually see the dialogue
being played out. Also, vproximity

wo
is slightly modified, such that

the value turns 0 if the user is further away than a maximum
distance set by the author. If the average vξI remains above a
certain threshold after I has finished, the experience manager
assumes that the information was consumed and the experience
state is set.

VI. TWO-LEVEL PLANNING FOR ONLINE NARRATIVE
GENERATION

In order to embed user interactions into the running story
and follow an optimal path, we developed a planning system
that consists of two stages: (1) finding the best path along
the authored stories and (2) synthesizing event sequences to
reach the previously determined optimal storyline. The first
task is handled by the Trajectory Planner, whereas the latter
is solved with Monte Carlo Tree Search (MCTS) for Online
Narrative Generation.

A. Trajectory Planner

In narratives, the shortest story path is rarely the best one.
Our trajectory planner aims to score possible paths through a
story graph according to how well they fit a trajectory defined
by the author. Such a trajectory could represent suspense,
user awareness, emotions of characters or other measures

that can be inferred from the interactive narrative. For now,
we aim to maintain high engagement, which simplifies the
trajectory to a straight line over time with value 1. The
trajectory planner evaluates each story arc of a story graph
relative to the engagement values stored in the user model
and represents each storyline as a sequence of values, which
it then compares to the given trajectory. In our case, the
algorithm returns for each story graph the storyline with
highest average engagement value.

1) Implementation Details: The trajectory planner
performs an exhaustive search and represents each possible
path through a story graph as a series of values (one for
each story arc) that can then be fitted to the author defined
trajectory. Therefore, we evaluate the engagement estimate
vαi

of every story arc αi as follows:

Engagement Value for Contained Event Instances First we
evaluate the story arc for how engaging its event instances are.

vIi = ve ·
1

|w|
∑
wo∈w

vwo ,

where w are the participants of the event instance Ii = 〈e, w〉.
We then average the vIi of all event instances Ii ∈ I, the

set of event instances in αi, to get our final estimate vI.

Engagement Value for Participants We calculate the fre-
quency rwo

at which some smart object wo appears in αi as:

rwo
=

N(wo)∑
wi∈WN(wi)

,

where N(wo) depicts how often wo participates in some event
instance and W is the set of all smart objects participating in
the story arc αi.

Finally, the cumulative engagement value for the partici-
pants in αi is calculated as

vW =
∑
wi∈W

rwi
vwi

.

Engagement Value for Story Arc The two measures above
are averaged to estimate the engagement value of the story arc
αi as

vαi =
1

2

(
vI + vW

)
. (2)

With these values, we can score each acyclic storyline
through a story graph according to its engagement over time
and select the one that is closest to the author-defined trajec-
tory. Since we perform this calculation for each story graph
separately, we can assign each story graph Ai a score equal
to the score of its best storyline. This allows us to compare
the different story graphs and find the best suiting one. In case
that the user no longer seems interested in the current storyline
we can attempt to guide the story towards a story graph with
a higher score.



B. Online Narrative Generation

An optimal path is of no use if we are unable to find
a way to get there or stay on it. Therefore, we require an
online planner that can synthesize event sequences leading
to the optimal storyline. However, planning in narrative state
space is known to be P-SPACE complete [21]. This means
that for large narratives, we have to constrain the state space
or accept the fact that we cannot search the whole state
space for a solution path. Monte Carlo Tree Search (MCTS)
has been successfully applied to several high dimensional
problem domains like the game Go [22] or the domain
of General Game Playing [23]. Additionally, its anytime
characteristic is very useful for real-time applications, as it
allows a best next step to be extracted at any time, even
though a full solution plan might not yet be available. It
is for these reasons that we explore the approach of using
an MCTS algorithm to synthesize event sequences in real-time.

1) Monte Carlo Tree Search: MCTS is an iterative search
algorithm that samples the search space and builds an asym-
metric search tree. Each node of the tree represents a state
s and stores statistics about how often a transition a was
sampled in this state (N(s, a)), how many times this node
was reached (N(s)), and the average reward Q(s, a) obtained
after applying transition a in state s. The child nodes represent
the states directly reachable over some transition a. MCTS
performs several iterations to sample the search tree before
converging on a best next step. Each iteration starts at the
root node s0 of the tree and can be split up into four steps:
Selection, Expansion, Simulation and Backpropagation.

Selection In the selection step, the algorithm decides on
the next child node of the search tree to visit. This decision
is usually done by equally weighting exploitation (select child
node with highest average value) and exploration (select child
node with lowest visit count). This is usually done by using
the Upper Confidence Bound applied to Trees (UCT) [24]:

UCT (s) = Q(s, a) + k

√
logN(s)

N(s, a)
,

where k is usually chosen to be
√

2 and attempts to balance
the left term (exploitation) with the right term (exploration).

The child node with highest UCT value is selected and the
iteration continues at this child with another selection step
unless we reached a leaf node. At a leaf node we either
perform Expansion, in case that the maximum depth of the
tree is not yet reached, or Simulation respectively.

Expansion In the expansion step, all states that are reach-
able with some transition from the current node are added as
child nodes. This way the search tree grows. However, before
any of these children is allowed to undergo Expansion as well,
they all have to be visited at least once.

Simulation When the iteration reaches a leaf node or a node
that has not yet been visited, a random simulation of transitions
is performed until a goal state or the maximum search depth
is reached. The final state sk of this simulation is evaluated

according to a heuristic function. The heuristic value h(sk) is
then used in the backpropagation step.

Backpropagation In this step, the heuristic value h(sk)
achieved at the end of the simulation step is added to the
average Q(s, a) of each node that was visited when traversing
from the root to the sampled leaf node. The visit count N(s)
and N(s, a) of each visited node is also increased. With this,
the iteration has finished and a new one can start at the root.

2) Implementation Details: The MCTS algorithm
implemented in our system uses the standard Upper
Confidence Bound applied to Trees (UCT) [24], which has
previously been used for narrative generation [16]. At the
leaf nodes we perform simulations based on an evolutionary
algorithm similar to the one proposed in [25] until a goal
state or a predefined maximum depth is reached.

Evolutionary Algorithm Since completely random
simulations in high dimensional spaces are not very effective,
we direct the simulation step towards solutions with higher
heuristic value by using an evolutionary algorithm. Therefore,
each leaf node contains a population P = {p0, p1, . . . pn}
of simulations p = {a0, a1, . . . ak} that have been evaluated
during past iterations. Each p is associated with the heuristic
value h(sk) it achieved at its final state. The population of
each leaf node is initialized with one random simulation
p0, which from there on undergoes local mutations or
is recombined with paths from the same population. In
comparison to the approach in [25], where transitions do
not have any preconditions, we have to assure however, that
the mutated path is still a valid one. If preconditions are no
longer met at some point during a mutated simulation, a
random valid transition is introduced instead. Every mutated
path is eventually evaluated and added to the population.
Whenever the population’s maximum size is reached, the
lowest scoring specimen p is removed, training the population
towards higher rewards. In order to assure enough diversity
among the specimen, completely random simulations are
performed approximately every third simulation and added to
the population according to the same rules.

Heuristic Function The final world state sk reached by
a simulation is evaluated according to the following state
distance heuristic:

h(sk) = w(g) ·
(
1− d(sk, g)

)
,

where g is the goal state, w(g) the weight for that goal
state as set by the experience manager and d(sk, g) the
normalized state distance between sk and g. Since we have
binary states, d(sk, g) is equal to the normalized number of
state bits that have to be switched in order to arrive at the
goal state g, which can be calculated efficiently. Additionally,
goal states can be simplified by using state masks. These
masks define which bits of the goal state really need to
be met and which ones are not relevant and can therefore
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Fig. 3. Controlling the Story. The optimal path for each story graph is outlined in color. Goal states are highlighted in orange and are annotated with their
respective weights. (a) shows the case where the MCTS needs to generate a path to reach the follow-up arc. (b) shows a scenario, where the follow-up arcs
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states for the MCTS. (d) shows the case, where the executed user interaction conveys a story state that makes it impossible to return to the current story
graph, due to its invariant. Here, some event on story graph 2 sets STATE1 back to false, allowing the execution to return to the interrupted story graph.

be excluded from the distance calculation. The experience
manager masks out all those bits of a goal state that are not
relevant for the successful execution of the story arc that
would be reached when arriving at this goal state. This is
similar to planning in PDDL, where goal states are usually
only a set of specific literals that have to be satisfied. These
state masks are calculated offline for every authored beat of
a story arc, therefore not impacting real-time performance.

3) Planning in the Story Domain: The nodes of the search
tree represent world states, whereas the edges represent the
event instances applicable in the respective world state. It is
important to note that the MCTS is not allowed to generate
event instances that change story states or experience states.
These can only be changed by events that are part of an
authored story arc or an author intended interaction event.

In the most simple case, the planner has to be invoked
when the end of a story arc is reached and a plan to satisfy
the preconditions of the follow-up arc has to be found, as
shown in Figure 3 (a). If all of the follow-up arcs are blocked
due to non-matching story states or experience states, then the
experience manager has to plan towards another story graph
as illustrated in Figure 3 (b). Whenever the user triggers a user
interaction that changes the world state s, the MCTS is invoked
to determine a path, after which the story can seamlessly
continue on the optimal path, as illustrated in Figure 3 (c)
and (d).

The possible goal states for the search are (1) the initial
world state of the beat that got interrupted by a user inter-
action, (2) the initial world state of the beat that would have
followed, (3) the initial world states of the follow-up arcs of
the current story arc and (4) the initial world states of all
other reachable story graphs. Since the MCTS only operates
in physical state space, the experience manager further reduces
the set of goal states to those, whose story state preconditions
and invariants are met at the initial state of the search. Each
goal state gk is then weighted by the score of the best
path through the story graph Ai on which gk resides. With

these weights, the trajectory planner guides the online story
generation, as the experience manager only selects the goal
state with highest weight for planning. Additional weights
apply depending on which of the four goal state categories
above gk belongs to.

For each plan, we grant the MCTS planner 1500ms of
time, which is an upper limit for maintaining a real-time
experience [5]. If the MCTS cannot find a full solution path
in the given time, the experience manager selects the best next
step from the root node for execution and updates the root
accordingly. During the event instance’s execution, the MCTS
has time to calculate the next step or find a full solution path.
The MCTS only stops once its root node represents the goal
state of the search, which means that the experience is back
on track of an authored story arc.

VII. RESULTS

We present the key concepts of our system on an interactive
story and elaborate on the changes required to embed such
stories in an AR or VR environment. Also, we evaluate
our MCTS implementation within a more challenging story
domain.

A. Example Interactive Story

The example interactive story takes place in our Haunted
Castle scenario. Its domain consists of 10 smart objects and
75 possible event instances, which resulted in an average
branching factor of approximately 19 for online narrative
generation.

The interactive story follows the concepts illustrated in
Figure 3. It consists of three story graphs: the main story
graph and two additional ones, telling background information.
Moving this information into separate story graphs allows to
access them from any other place in the story through story
states. After the initial story arc, the author wants the user
to learn more about the background of the characters before
continuing. Therefore, the follow-up arcs are blocked by story



state preconditions. These can only be satisfied by visiting
one of the other two story graphs, similarly to Figure 3 (b).
The trajectory planner evaluated one of the two as being
more engaging, due to the user’s previous engagements with
characters and events. Therefore, the MCTS planned towards
the story graph containing the best scoring storyline.

Once the small story graph ended, the experience manager
attempted to continue on the story graph it left off from. There,
the previously blocked follow-up arcs were now unlocked due
to a story state that was set at the end of the small story graph.
If the user still wanted to learn about the other character, then
they could trigger an interaction event that sets a story state
that is incompatible with the invariant of the current story
arc, as illustrated in Figure 3 (d). If executed, this forced the
experience manager to plan towards a compatible story arc,
which it found in the other small story graph.

Further user interactions allowed to make characters pick
up or drop objects, which in theory could cause any of the
diversions indicated in Figure 3 (c). The additional weights
indicated there ensured however that the story stayed on the
current story arc, unless a much more engaging storyline had
been identified by the trajectory planner.

For this story, the MCTS planner was given 1500ms before
being polled for the best next step. The trajectory planner
returned results almost instantaneously, which was also due
to the small search space.

B. AR & VR Application

We deployed our storytelling system in preliminary AR
and VR applications. The AR application allows the user to
discover a story in our Haunted Castle scenario in a top down
view, as can be seen in Figure 4. Interactions with the smart
objects are enabled through touch input or proximity. The latter
required some minor adaptations, since in AR the camera is
much further away than in a first person experience. In order to
allow proximity calculations for interactions and engagement
values, the player is embodied as a glowing orb in the scene.
The orb follows the center of the AR device’s camera and is
restricted to stay within the navigable boundaries of the scene.
Proximity calculations are performed relative to this orb.

In our VR application, the user is immersed inside the
Haunted Castle and experiences an interactive story from
a first person perspective, as illustrated in Figure 5. There
were no issues concerning proximity calculations. The only
adaption required was to use the controller of the VR device
for interaction and navigation input beyond the tracking area.

C. MCTS Planner Performance

The MCTS had no issues for planning in our Haunted Castle
scenario and was able to generate plans within the 1500ms
timelimit per step, with no noticeable latency in our interactive
application. In order to evaluate the MCTS planner on a more
challenging problem domain, we created one consisting of
10 smart objects, 27 events and 314 possible event instances,
which resulted in an average branching factor of approximately
43. We generated several random goal states and let the MCTS

Fig. 4. The AR application recognizes the map of the Haunted Castle as AR
marker and projects the interactive story world onto it.

Fig. 5. The VR application allows to get closer into the story while preserving
the known engagement calculations and user interactions.

find a path to them in an iterative fashion. The MCTS was
granted 1500ms for each step. The MCTS planner was able
to produce a valid plan for a majority of these randomly
generated goal state instances within a reasonable amount of
steps. However, there were a few problem instances where
the planner was unable to return a solution. This can be
attributed to the strict time bounds we placed on the planner
and local minima encountered during the search. The local
minima is caused by one or more events reducing the state
distance by a large amount. The MCTS would usually execute
these solutions first as they provide a good heuristic score.
However, if they have to be temporarily undone later, in order
to execute another required event, the MCTS may stay in this
local minima.

Tests were performed on an Intel i7 6700K running at 4.0
GHz and 32 GB of RAM.

VIII. LIMITATIONS & FUTURE WORK

The user engagement model requires a user study for
further evaluation and could be extended with more advanced
concepts and heuristics. For example, eye-tracking could give
a more reliable estimate of what the user is engaged with.
Also, only because a story arc is not featuring a character wo
in its event instances does not mean the other participants are
not talking about wo, which would also be very interesting
for a user, who is interested in wo. Currently, the trajectory
planner cannot detect this and would rank such a story arc
rather low. Having author annotations for story arcs would
help the trajectory planner to score them higher.



Additionally, the trajectory we chose for evaluation does not
consider any temporal aspect. If the trajectory were to be a
Freytag’s pyramid, then the author might want to define how
long the rising action lasts in comparison to the exposition or
denouement. However, for this to work we would require an
estimate for how long a story arc takes to execute.

Despite being intended for planning in high dimensional
spaces, the reliability of the MCTS, when it comes to propos-
ing a best next step, is decreasing for high branching factors.
Therefore, improved heuristics for search acceleration, and
analysis of domains to identify and resolve dead ends and local
minima, are potential avenues of future exploration. Possible
techniques for reducing branching factor include: (1) only
considering smart objects used in the story arc of the goal
state, (2) novelty pruning [26] or (3) authoring and leveraging
character intentions [27].

Due to the iterative planning approach, we cannot perform
any intervention of user interactions. This means that our story
domain needs to be carefully crafted such that states are always
reversible or the author creates a story graph to handle the
effects of exceptional user interactions.

IX. CONCLUSION

We proposed an experience management system for inter-
active storytelling that leverages user engagement to drive nar-
rative progression. Our domain representation includes one or
more story graphs annotated with story states and experience
states to allow the author to effectively constrain the narrative
paths. We describe the construction of a user model based on
engagement with characters and objects in the story. Our two-
level online planning system first computes optimal trajectories
within story graphs, and second finds a solution path to the
best trajectory using Monte Carlo Tree Search. We described
the adaptations required for modeling user engagement in AR
and VR applications, and presented the main concepts of our
interactive storytelling system on an example story.
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